Structural analysis

Load-bearing structures

1. Inner leaf – Dimensioning

3 story building Wall height – 3100 mm

Tributary area calculation: Span of slab= appx. 7,5m2 (half 3,75m2) 3 storeys= $3 \times 3,75=11,25m2$ Number of walls stacked: $2 \times 3,1 = 6,2m2$ Total: 11,25 + 6,2 = 17,45 m2

Min. wall thickness 150 mm.

With particularly careful assembly and checking of the tolerances, it is possible to design with 65 mm compensation of 150 mm walls or beams. However, this only applies to elements with $I \le 7.2$ m. For lengths greater than 7.2 m, it is recommended to increase the

compensation depth, or otherwise take into account the larger tolerance on the element length.

2. Deck element – Dimensioning

Self-weight of deck and on slab :

Komponent	Tykkelse [m]	Bredde [m]	Densitet kN/m3	Load kN/m2	Kommentar		
Laminate	0,09	1	8,83	0,79			
Underlay	0,003	1	0,35	0,00			
Concrete	0,09	1	24	2,16			
Isolering	0.1	1	0.95	0.10			
Huldæk	-,-		-,	2.90	Spæncon		
				5.95	Total		
<i>Self-weight</i> Self-weight on the slat):	3,0	5 kN/m²	Thickness of	f deck element – <mark>220</mark> mm		
Imposed load Main category: Sub category: Offices and light indu: Imposed load from pe	stry. ople/furniture:	8 8 2,50	kN/m2	,	Modulmål = 1200 Formmål = 1197±3 ✓		
Line load from moveal Uniform load from mo	ble partitions: veable partitions:	≤ 2 kN/m 0,80	kN/m2				
Design load gEd = 1,0*3,17 + 1,5*(2	2,50 + 0,80) = 8,12 kN/	<u>m2</u>					
Crack load gErev = 3,17 + (2,50 + (Balance load gEbal = 3,17 kN/m2	0,80) = 6,47 kN/m2						
Chose element:		ElementEX22					
Span (visible width):		7800	mm				
Chose reinforcement:		8 L12,5					
Ultimate Limit States (U qRd = 18,20 kN/m2 ≥ q	Ultimate Limit States (ULS) $qRd = 18,20 \text{ kN/m2} \ge qEd = 8,12 \text{ kN/m2}$ Load bearing capacity OK!						
Cracking (rev) qrev = 12,50 kN/m2 ≥ q	Erev = 6,47 kN/m2	No cracking. OK!					
<i>Deflection (bal)</i> qbal = 3,80 kN/m2 ≥ qE	bal = 3,17 kN/m2	Deflection OK!					
Element data Height: Reinforcement:	220 8 L12,5 8 10	mm (L = lines) kN/m ²					
Reinforcement: Self-weight slab: Ultimate Limit States (U	8 L12,5 3,10 LS) - included self-weig	(L = lines) kN/m ² ht of the slab					

Serviceability Limit States (SLS) - included self-weight of the slab <u>Ed = (3,17 + 3,10) + 0,4*(2,50 + 0,80) = 7,59 kN/m2</u>

		Spændvidde		4,2	4,8	5,4	6,0	6,6	7,2	7,8
6 L9,3 + 2 L12,5	M _{Rd}	141,50 kNm	q _{Rd}	-	-	29,1	23,0	18,4	15,0	12,3
	V _{Rd}	102,15 kN	q _{vRd}	-	-	28,3	25,1	22,6	20,4	18,6
	M _{mREI60}	110,84 kNm	QmREI60	-	-	22,1	17,3	13,7	11,0	8,9
	V _{vREI60}	55,10 kN	q _{vREI60}	-	-	13,8	12,1	10,7	9,5	8,5
	MmREI120	53,42 kNm	Q mREI120	-	-	9,0	6,7	4,9	3,6	2,6
	MmREI120 *	95,43 kNm	q _{mREI120} *	-	-	18,6	14,4	11,4	9,0	7,2
	V _{vREI120}	47,15 kN	QvREI120	-	-	11,3	9,9	8,7	7,7	6,8
	M _{rev}	111,52 kNm	q _{rev}	-	-	22,3	17,4	13,8	11,1	9,0
	M _{bal}	43,86 kNm	q _{bal}	-	-	6,8	4,9	3,5	2,4	1,6
	f _{lev} i mm		flev	-	-	7,9	8,8	9,2	9,2	8,5
	f _{et} i mm		f _{e1}	-	-	0,5	0,8	1,1	1,6	2,2
	Egensvingning	Hz	f _{,1}	-	-	15	13	12	11	10

Table A1.4 DK NA Empirical values for acceptable natural frequencies and acceleration limits

Structure	Action	Normally satisfac- tory functioning	Often unsatisfacto- ry functioning	Acceleration limit in % of the gravity acceleration
Grandstands, fitness centres, sports halls and public premises	Rhythmic load caused by move- ment of people	<i>n_e</i> > 10 Hz	<i>n_e</i> < 6 Hz	10 %
Residential buildings	Load from walking	<i>n_e</i> > 8 Hz	$n_e < 5 \text{ Hz}$	0,1 %
Office premises	Load from walking	$n_e > 8 \text{ Hz}$	$n_e < 5$ Hz	0,2 %

NOTE - Natural frequencies and accelerations are calculated during normal use, where the fluctuating action is typically considerably less than the action corresponding to the quasi-permanent combination specified in clause 6.5.3 of EN 1990.

Table A1.4 from danish national annex to Eurocode 0

Overlap over load-bearing wall: 95 mm (min. 75 + 20 mm for tolerance) Side: 35 mm

3. Foundation

Links min 10 mm placed every 300-400 mm

Perimeter reinforcement min. 12mm

Vertical links 8mm

Partition walls - 200 mm (min 180 mm)

Foundation Calculation

To be able to figure out what the right size of the foundation can be. We must calculate if the foundation can withhold the weight that is on top of the foundation. To be able to calculate this, we must look at the geotechnical report that is provided to us. We were provided multiple results from our plot, but to be safe we chose the results that show area that can carry the load the least, which is result number 8. Calculations will be attached below:

Building component	Characteristic load			CC2		Ψn	γ		Reduction factor for openings	Design Ioad	Notes	
	g [kN/m²]	q	Tributary	Load pr.	Consequens	Category	Combination	Safety	Floor		Total	
		[kN/m²]	area	meter	e class factor		factor	factor	Reductio		load	
			span [m]	[kN/m]					n factor		[kN/m]	
Dead load												
Roof	3,30		7,5	24,8	1,0		1	1,0		1,00	24,75	
Wall 2 floor	5,67		2,8	15,9	1,0		1	1,0		1,00	15,88	
Storey partition 2 floor	5,95		7,5	44,6	1,0		1	1,0		1,00	44,63	
Wall 1 floor	5,67		3,1	17,6	1,0		1	1,0		1,00	17,58	
Storey partition 1 floor	5,95		7,5	44,6	1,0		1	1,0		1,00	44,63	
Wall ground floor	5,67		3,1	17,6	1,0		1	1,0		1,00	17,58	
Storey partition ground floor	6,07		7,5	45,5	1,0		1	1,0		1,00	45,53	
Wall basement	11,83		2,8	33,1	1,0		1	1,0		1,00	33,12	
										ΣG _d =	140,85	
Imposed load												
Residence all floors		1,50	15,0	22,5	1,0	Α	1	1,5	0,667		22,51	
Climatic loads												
Snow		0,80	6,0	4,8	1,0		0,3	1,5			2,16	
Wind		-1,20	6,0	-7,2	1,0		0,3	0			0,00	
										ΣS _d =	165,52	Total load pr. meter [kN/m]

Reinforcement

We would need 12 mm diameter of main reinforcement and 8 mm diameter of stirrups. The minimal steel area is 700 mm². We would need 6 main reinforcements and stirrups will be placed every 1000 mm. Calculations will be attached below:

Minimum Steel Aren 0,20 · 700 · 500 /100 = 700 mm² Number of steel bar needed N= 700/113 = 6,2 →6 Ø12mm main trinbranent Width of foundation = 700 mm height of foundation = 100 mm Amount of reinforcement in Soundation = 0, 20%

4. Basement external wall

Basement external wall made of in-situ casted concrete with external XPS insulation:

- The dimensions of the basement wall under an external wall are 500 mm + 180 mm insulation

- The dimensions of the basement wall under an internal load-bearing wall is 250 mm + 180 mm insulation

5. Soil Pressure Calculation

The soil pressure on our basement wall is 28 KN/m according to our calculations.

The soil/sand density used is 20 KN/m³

The height of our basement wall is 2,8 m

To find the soil pressure coefficient we used 30 degrees for the back fill type and the OCR as 1 due to it being a new building.

Total Momentum

To determine the minimum thickness of our basement wall and the maximum height, we must calculate the total momentum of the basement wall.

To find the total momentum we must first find the maximum momentum with uniformly distributed load and triangular load on the basement wall. We used the equations below to find these.

We first found the uniformly distributed load on the wall and what we ended up with is 2,40 KN/m. After finding this we calculated the triangular load on the wall. What we ended up with is 19,11 KN/m. To find the total we must add the two values together and in total we got 21,51 KN/m.

Max. Momentum for Unidormly distributed load	Max. Momentum for triangular load fram soil
Money P = Mark, Manaster See UDL Manas P + 1 + P + h"	Mmany: Max, momentum for fornyular load from soil
Q - We be our running maker	M man - 0.12 83 . W. h
h = hight	W = total load on beam/will
P. 2 KM	W= 0.5 - 01 h Q1 = Soil Produce
h. 2.8 -	h = height at busement well
$\frac{F_1}{E_1} \frac{M_{max}}{E_1} = \frac{1}{8} \cdot 2 \cdot (2\pi)^2$	Franklan
$=\frac{1}{g}$ · 2 · 9,41	(). 0.5.28.2.4 (): 39,2
= <u>1</u> · 19,22	M
$= \frac{ q_{1}, 2, 2}{8}$	M
Wince-P : 1-96-KUZA	Full lost
	Mana-que (4, 08 EN/m
	Mtoh = 16,09 kN/-

Basement Wall dimensions

We use these numbers to find the minimum thickness and maximum height of our basement walls. We take the value we got from the load scheme, which is 166,42 KN/m and the value from the soil pressure, which is 16,04 KN/m, and see where it intersects in the table below.

This table is from Betongelementforegningen bind 2. As seen on the table, it intersects where the line meets the curved line. The value associated with this curve is:

Thickness = min.180 mm

Height = max. 3200 mm

The load bearing structure of our basement walls have a thickness of 500 mm and height of 2800 mm as seen in our basement wall analysis.

Though we can go lower in thickness, we must have at least 500 mm thickness due to our external wall above the terrain having a thickness of 509 mm.