Structural analysis

Load-bearing structures

1. Inner leaf - Dimensioning

3 story building
Wall height - 3100 mm

Tributary area calculation:
Span of slab= appx. $7,5 \mathrm{~m} 2$ (half $3,75 \mathrm{~m} 2$) 3 storeys $=3 \times 3,75=11,25 \mathrm{~m} 2$
Number of walls stacked: $2 \times 3,1=6,2 \mathrm{~m} 2$
Total: $11,25+6,2=17,45 \mathrm{~m} 2$

Min. wall thickness 150 mm .
With particularly careful assembly and checking of the tolerances, it is possible to design with 65 mm compensation of 150
mm walls or beams. However, this only applies to elements with $\mathrm{I} \leq 7.2$
m.

For lengths greater than 7.2 m , it is recommended to increase the compensation depth, or otherwise take into account the larger tolerance on the element length.

2. Deck element - Dimensioning

Self-weight of deck and on slab :

		Spændvidde		4,2	4,8	5,4	6,0	6,6	7,2	7,8
6L9,3 + $2 \mathrm{~L} 12,5$	$M_{\text {Pd }}$	$141,50 \mathrm{kNm}$	9 Ad	-	-	29,1	23,0	18,4	15,0	12,3
	$\mathrm{V}_{\text {Rd }}$	$102,15 \mathrm{kN}$	$\mathrm{q}_{\text {vfd }}$	-	-	28,3	25,1	22,6	20,4	18,6
	$\mathrm{M}_{\text {mREIS }}$	$110,84 \mathrm{kNm}$	$\mathrm{q}_{\text {mREI60 }}$	\cdot	\cdot	22,1	17,3	13,7	11,0	8,9
	$\mathrm{V}_{\text {vREIS }}$	$55,10 \mathrm{kN}$	qumbigo	-	-	13,8	12,1	10,7	9,5	8,5
	$\mathrm{M}_{\text {mRE120 }}$	53,42 kNm	9 ${ }^{\text {mmEE120 }}$	-	-	9,0'	6,7	4,9	3,6	2,6
	$\mathrm{M}_{\text {mREl120 }}$ *	95,43 kNm	$\mathrm{q}_{\text {mRE } 1120}$ *	-	-	18,6	14,4	11,4	9,0	7,2
	$\mathrm{V}_{\text {vAEII20 }}$	$47,15 \mathrm{kN}$		-	-	11,3	9,9	8,7	7,7	6,8
	$\mathrm{M}_{\text {rev }}$	111,52 kNm	qrev	-	-	22,3	17,4	13,8	11,1	9,0
	$\mathrm{M}_{\text {bal }}$	$43,86 \mathrm{kNm}$	$q_{\text {bal }}$	\cdot	-	6,8	4,9	3,5	2,4	1,6
	$\mathrm{f}_{\text {bax }} 1 \mathrm{~mm}$		$\mathrm{f}_{\text {lev }}$	\cdot	-	7,9	8,8	9,2	9,2	8,5
	$\mathrm{f}_{\text {et }} \mathrm{i} \mathrm{mm}$		$\mathrm{f}_{\text {e1 }}$	-	-	0,5	0,8	1,1	1,6	2,2
	Egensvingning	Hz	$\mathrm{f}_{4} 1$	-	-	15	13	12	11	10

Table A1.4 DK NA Empirical values for acceptable natural frequencies and acceleration limits

Structure	Action	Normally satisfac- tory functioning	Often unsatisfacto- ry functioning	Acceleration limit in \% of the gravity acceleration
Grandstands, fitness centres, sports halls and public premises	Rhythmic load caused by move- ment of people	$n_{e}>10 \mathrm{~Hz}$	$n_{e}<6 \mathrm{~Hz}$	10%
Residential buildings	Load from walking	$n_{e}>8 \mathrm{~Hz}$	$n_{e}<5 \mathrm{~Hz}$	$0,1 \%$
Office premises	Load from walking	$n_{e}>8 \mathrm{~Hz}$	$n_{e}<5 \mathrm{~Hz}$	$0,2 \%$

Table A1.4 from danish national annex to Eurocode 0

Overlap over load-bearing wall: 95 mm ($\mathrm{min} .75+20 \mathrm{~mm}$ for tolerance)
Side: 35 mm

3. Foundation

Links min 10 mm placed every $300-400 \mathrm{~mm}$
Perimeter reinforcement min. 12 mm
Vertical links 8 mm
Partition walls - 200 mm (min 180 mm)

Foundation Calculation

To be able to figure out what the right size of the foundation can be. We must calculate if the foundation can withhold the weight that is on top of the foundation. To be able to calculate this, we must look at the geotechnical report that is provided to us. We were provided multiple results from our plot, but to be safe we chose the results that show area that can carry the load the least, which is result number 8 . Calculations will be attached below:

Building component	Characteristic load				CC2		ψ_{n}	γ		Reduction factor	Design	Notes
	$\mathrm{g}\left[\mathrm{kN} / \mathrm{m}^{2}\right]$	$\underset{\left[\mathrm{kN} / \mathrm{m}^{2}\right]}{\mathrm{q}}$	$\left\|\begin{array}{c} \text { Tributary } \\ \text { area } \\ \text { span }[\mathrm{m}] \end{array}\right\|$	$\begin{array}{\|c\|} \hline \text { Load pr. } \\ \text { meter } \\ {[\mathrm{kN} / \mathrm{m}]} \\ \hline \end{array}$	Consequens e class factor	Category	Combination factor	Safety factor	Floor Reductio n factor		$\begin{gathered} \text { Total } \\ \text { load } \\ {[\mathrm{kN} / \mathrm{m}]} \end{gathered}$	
Roof	3,30		7,5	24,8	1,0		1	1,0		1,00	24,75	
Wall 2 floor	5,67		2,8	15,9	1,0		1	1,0		1,00	15,88	
Storey partition 2 floor	5,95		7,5	44,6	1,0		1	1,0		1,00	44,63	
Wall 1 floor	5,67		3,1	17,6	1,0		1	1,0		1,00	17,58	
Storey partition 1 floor	5,95		7,5	44,6	1,0		1	1,0		1,00	44,63	
Wall ground floor	5,67		3,1	17,6	1,0		1	1,0		1,00	17,58	
Storey partition ground floor	6,07		7,5	45,5	1,0		1	1,0		1,00	45,53	
Wall basement	11,83		2,8	33,1	1,0		1	1,0		1,00	33,12	
										[$\mathrm{G}_{\mathrm{d}}=$	140,85	
Imposed load												
Residence all floors		1,50	15,0	22,5	1,0	A	1	1,5	0,667		22,51	
Climatic loads												
Snow		0,80	6,0	4,8	1,0		0,3	1,5			2,16	
Wind		-1,20	6,0	-7,2	1,0		0,3	0			0,00	
										$\Sigma \mathrm{S}_{\mathrm{d}}=$	165,52	Total load pr. meter [kN/m]

Foundation Calculation

$$
E_{d}=165,52 \mathrm{kN} / \mathrm{m}^{2}
$$

```
\(\pi+2=5,14\)
\[
\begin{aligned}
& \text { Value formal } \\
& \text { Geotuhnical }
\end{aligned}=190 \mathrm{kN} / \mathrm{m}^{2}
\]
\(\underset{\substack{\text { Value forme } \\ \text { Geotutinical }}}{ }=190 \mathrm{kN} / \mathrm{m}^{2}\)
Report
    Report
```

$$
\begin{aligned}
& C_{d} d=\frac{190 \mathrm{kN} / \mathrm{m}^{2}}{1,8}=106 \mathrm{kN} / \mathrm{m}^{2} \\
& R_{d}=5,14 \cdot 106 \cdot 0,7 \cdot 1,0 \\
& R_{d}=381,39 \mathrm{kN}>165,52 \mathrm{kN} / \mathrm{m}^{2} \quad 765,52 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Wiidthof } \\
& \text { foundation }=700 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Undriined } \\
& \text { Shear Stangh }=1,8 \\
& \text { Wall load } \\
& \text { bearing }=500 \mathrm{~mm} \\
& \text { Stmanare }
\end{aligned}
$$

Reinforcement

We would need 12 mm diameter of main reinforcement and 8 mm diameter of stirrups. The minimal steel area is $700 \mathrm{~mm}^{2}$. We would need 6 main reinforcements and stirrups will be placed every 1000 mm . Calculations will be attached below:

$$
\begin{aligned}
& \text { Minimum Steel Area } \\
& 0,20 \cdot 700 \cdot 500 / 100=700 \mathrm{~mm}^{2} \\
& \begin{array}{l}
\text { Number of steel bar needed } \\
N=700 / 113=6,2 \rightarrow 6 \\
\text { ø12 mm main Hinnorument }
\end{array} \\
& \text { Width of foundation }=700 \mathrm{~mm} \\
& \text { height of foundation= } 500 \mathrm{~mm} \\
& \text { amount of reinfrument in } 0,20 \% \\
& \text { found devin } \quad 0 .
\end{aligned}
$$

4. Basement external wall

Basement external wall made of in-situ casted concrete with external XPS insulation:

- The dimensions of the basement wall under an external wall are $500 \mathrm{~mm}+180 \mathrm{~mm}$ insulation
- The dimensions of the basement wall under an internal load-bearing wall is $250 \mathrm{~mm}+180$ mm insulation

5. Soil Pressure Calculation

The soil pressure on our basement wall is $28 \mathrm{KN} / \mathrm{m}$ according to our calculations.

Sol	The soil/sand density used is $20 \mathrm{KN} / \mathrm{m}^{3}$
The height of our basement wall is $2,8 \mathrm{~m}$	

To find the total momentum we must first find the maximum momentum with uniformly distributed load and triangular load on the basement wall. We used the equations below to find these.

Figure 1 Simple Beam - Uniformly Distributed Load

Figure 5 Simple Beam - Load Increasing Uniformly to One End

We first found the uniformly distributed load on the wall and what we ended up with is 2,40 KN / m. After finding this we calculated the triangular load on the wall. What we ended up with is $19,11 \mathrm{KN} / \mathrm{m}$. To find the total we must add the two values together and in total we got $21,51 \mathrm{KN} / \mathrm{m}$.

Basement Wall dimensions

We use these numbers to find the minimum thickness and maximum height of our basement walls. We take the value we got from the load scheme, which is $166,42 \mathrm{KN} / \mathrm{m}$ and the value from the soil pressure, which is $16,04 \mathrm{KN} / \mathrm{m}$, and see where it intersects in the table below.

This table is from Betongelementforegningen bind 2. As seen on the table, it intersects where the line meets the curved line. The value associated with this curve is:

Thickness $=\min .180 \mathrm{~mm}$
Height = max. 3200 mm
The load bearing structure of our basement walls have a thickness of 500 mm and height of 2800 mm as seen in our basement wall analysis.

Fig 2. M-N diagram from Betonelementforeningen Bind 2
Though we can go lower in thickness, we must have at least 500 mm thickness due to our external wall above the terrain having a thickness of 509 mm .

